

Photo-modulation spectroscopy of GaBiAs /GaAs layers grown by MBE

Zahida Batool, Jeff Hosea and Stephen J. Sweeney Advanced Technology Institute and Department of Physics, University of Surrey, Guildford, Surrey, GU2 7XH, UK Tom Tiedje University of Victoria, Canada

Ist International workshop on 'III-V Bismide Materials for IR and Mid IR Semiconductors'

• What is modulated reflectance?

• Measure sample's reflectance **R** as a function of λ , while it is being modulated by <u>external periodic perturbation</u> : e.g. electric field (Electro-modulated reflectance - **ER**).

• Using a chopped pump laser beam gives especially useful

Photo-modulated Reflectance (**PR**) : <u>non-destructive</u>, <u>non-contact</u> form of ER.

• Periodically-excited carriers \rightarrow modulate internal <u>E</u>-fields \rightarrow modulate complex dielectric fn $\varepsilon_1 + i\varepsilon_2 \rightarrow \Delta \varepsilon_1, \Delta \varepsilon_2 \rightarrow$ differential changes $\Delta \mathbf{R}$ in reflectivity $\mathbf{R} \rightarrow \mathbf{PR}$ signal = $\Delta \mathbf{R}/\mathbf{R}$

Schematic of typical Modulated Reflectance Setup

GaBiAs/GaAs – sample info

sample	Bi%	Thickness of GaBiAS layer(nm)	GaAs Cap(nm)
R1835	2.3	40	300
R1829	4.5	30	uncapped
R1923	8.5	30	
R1914	10.4	30	

Z- axis is the growth direction

Obtaining the band gap transitions from PR

PR Spectra of GaBiAs Layers with 2.3%<Bi<10.4% For Bandgap Transition

GaBiAs PR or PT (2.3%, 4.5%, 8.5%, 10.4%)

Strain induced Valence Band splitting (VBS)

➢ 30-40nm GaBiAs thin layers are under compressive strain, creating VBS

VBS changes at a rate on the order of 14.7meV/Bi% in good agreement with Franceour *et al* (15.1meV/Bi%)

Spin orbit splitting transition from PR

PR Spectra For Spin orbit splitting

Reduction of Bandgap and Spin orbit Splitting with increase in Bismuth content

[4] K. Alberi and O. D. Dubon, W. Walukiewicz and K. M. Yu , K. Bertulis, and A. Krotkus , Appl. Phys. Lett 91.051909(2007).

Strain Tensor Components

Where lattice constant of GaBiAs has been calculated by Vegard'Law

$$a_{GaBiAs} = (1 - x)a_{GaAs} + xa_{GaBi}$$
$$a_{GaBi} = 6.324 A^{0} [5]$$

$$\varepsilon_{zz} = -(2c_{12}/c_{11})\varepsilon_{xx}$$

 $a_{GaAs} = 5.65325A^0, C_{11} = 12.21 \text{ and } C_{12} = 5.66 \text{ of } GaAs [6]$

^[6] I.Vurgaftman and J.R.Meyer, L.R.Ram-Mohan, J.Appl. Phys, 89, p5825 (2001)

Theoreticaly calculated strain tensor Components For the GaBiAs

^[5] A. Janotti, Su-Huai Wei, and S. B. Zhang, Phys. Rev. B 65,115203(2003)

Strain Effects on Bandgap

- When $a_{epi} > a_{sub}$, then material is under compressive strain as for GaBiAs.
- Energy levels for the HH,LH and Spin orbit splitting states under strain are [7]

$$E_{g}^{hh} = (E_{go} + \delta E_{H}) + \delta E_{s}$$

$$E_{g}^{lh} = (E_{go} + \delta E_{H}) + \frac{1}{2}(\Delta_{o} - \delta E_{s}) - \frac{1}{2}\sqrt{(\Delta_{o}^{2} + 2\Delta_{o}\delta E_{s} + 9\delta E_{s}^{2})}$$

$$E_{g}^{so} = (E_{go} + \delta E_{H}) + \frac{1}{2}(\Delta_{o} - \delta E_{s}) + \frac{1}{2}\sqrt{(\Delta_{o}^{2} + 2\Delta_{o}\delta E_{s} + 9\delta E_{s}^{2})}$$

where

$$\delta E_{s} = b(\varepsilon_{zz} - \varepsilon_{xx})$$
$$\delta E_{H} = (a_{c} + a_{v})(2\varepsilon_{xx} + \varepsilon_{zz}) = a(2\varepsilon_{xx} + \varepsilon_{zz})$$

b = shear deformation potential

a_c = conduction band hydrostatic deformation potential

a_v = valence band hydrostatic deformation potential

 $a = a_c + a_v$

By solving these equations and using our experimental results E_g^{hh} , E_g^{lh} and E_g^{so} we calculated the shear deformation potential 'b' for the GaBiAs as well as its unstrained bandgap E_{g0} and spin orbit splitting Δ_0 .

[7] Pollak, F. H."Effects of Homogeneous strain on the electronic and vibrational levels in semiconductors and semimetals" Vol.32,ed.P.T.Pearsall(Academic, New York, 1990)p.17

Shear Deformation Potential of GaBiAs

The rate of increase of magnitude of deformation potential is 163meV/Bi%

Resonance of unstrained Bandgap and Spin Orbit Splitting

GaBiAs Bandgap and SD splitting energy from fitting PR, shown for UNSTRAINED case

1.4 1.2 E_{go} 1 Energy (eY) . 8 .6 Δ_{0} 4 . 2 0 10 12 2 14 Q Bismuth (%)

By Using our experimental results of E_g^{hh} , E_g^{lh} and E_g^{so} ,calculated strain and deformation potential 'b' of GaBiAs ,we have calculated the unstrained bandgap E_{g0} and spin orbit splitting Δ_0 .

Resonance of unstrained Bandgap and Spin Orbit Splitting

GaBiAs Bandgap and SO splitting Energies from the Fitted PR, for the unstrained case

Conclusion

- 1. GaBiAs layers on GaAs experience compressive strain which creates a valence band splitting increasing at a rate on the order of 14.7meV/Bi%.
- 2. Magnitude of the shear deformation potential b for GaBiAs increases with a rate of ~163meV/Bi%
- 3. By using experimental E_g^{hh} , E_g^{lh} and E_g^{so} we have calculated the unstrained band gap and spin orbit splitting Δ_o , which become resonant with each other for bismuth fraction 10%<Bi< 12%.

